
TP_progDynamiqueCorNB

May 8, 2025

T.P. n°5 Programmation dynamique - corrigé

0.1 1. Rendu de monnaie
On se donne une liste L d’entiers ordonnée 𝑎1, … , 𝑎𝑘 qui représente la valeur faciale de pièces de
monnaie. On souhaite déterminer le nombre minimum 𝑟(𝑛, 𝑘) de pièces parmi 𝑎1, ..., 𝑎𝑘 dont la
somme vaut 𝑛 de façon à optimiser le rendu de monnaie.

Par exemple, si 𝑘 = 3 et 𝐿 = [1, 2, 5] alors : * 𝑟(7, 3) = 2 (car 7 = 1 × 5 + 1 × 2 et c’est la façon de
rendre 7€ qui utilise le moins de pièces). * 𝑟(7, 2) = 4 (car 7 = 3 × 2 + 1).
Remarques :
- On peut utiliser plusieurs fois la même pièce.
- 𝑟(0, 𝑘) revient à rendre 0€, ce qu’on peut faire avec 0 pièce : 𝑟(0, 𝑘) = 0 - 𝑟(𝑛, 0) revient à n’utiliser
aucune pièce, ce qui est impossible si 𝑛 ≠ 0 : on posera 𝑟(𝑛, 0) = ∞ (float("inf") en Python).

Question
Établir une relation de récurrence vérifiée par 𝑟(𝑛, 𝑘). On pourra distinguer deux cas
pour rendre 𝑛 euros avec les picèes 𝑎1, …, 𝑎𝑘 selon si 𝑎𝑘 est utilisée ou ne l’est pas.

Réponse
Si 𝑎𝑘 est utilisée : il faut encore rendre 𝑛 − 𝑎𝑘 euros avec les pièces 𝑎1, …, 𝑎𝑘 (on a le
droit d’utiliser plusieurs fois 𝑎𝑘), d’où 𝑟(𝑛, 𝑘) = 𝑟(𝑛 − 𝑎𝑘, 𝑘) + 1.
Si 𝑎𝑘 n’est pas utilisée, 𝑟(𝑛, 𝑘) = 𝑟(𝑛, 𝑘 − 1).
Dans le cas général, on considère les deux possibilités et on conserve le minimum :

𝑟(𝑛, 𝑘) = min(𝑟(𝑛, 𝑘 − 1), 𝑟(𝑛 − 𝑎𝑘, 𝑘) + 1)
Remarque : on ne peut utiliser 𝑎𝑘 pour rendre 𝑛 euros que si 𝑛 ≥ 𝑎𝑘. Si 𝑛 < 𝑎𝑘, on a
donc 𝑟(𝑛, 𝑘) = 𝑟(𝑛, 𝑘 − 1).
Question
En déduire une fonction rendu(L,n), programmée dynamiquement, qui renvoie le nom-
bre minimum de pièces requises pour rendre n euros, où L est la liste des pièces. Pour ce
faire, on définira et remplira la matrice R telle que R[n][k] contient le nombre minimum
de pièces nécessaire pour rendre n euros en utilisant les j premières pièces de L.

[1]: def rendu(L, n):
k = len(L) # nombre de pièces
R = [[0]*(k + 1) for _ in range(n + 1)]
for i in range(1, n + 1):

R[i][0] = float("inf")

1

for j in range(1, k + 1):
if i - L[j - 1] >= 0:

R[i][j] = min(R[i][j - 1], 1 + R[i - L[j - 1]][j])
else:

R[i][j] = R[i][j - 1]
return R[-1][-1]

rendu([1, 2, 5], 7)

[1]: 2

Remarque
La mise à jour de la matrice s’effectue dans le sens de lecture classique : dans un ligne de gauche
à droite, et de ligne en ligne. La formule de récurrence assure ainsi que seules des valeurs stockées
dans des cases précédemment remplies peuvent être appelées.

Question bonus
Réécrire la fonction précédente par mémoïsation plutôt que par programmation dy-
namique.

On choisit de créer un dictionnaire qui stocke les valeurs de couples r(n,k) à mesure de leur calcul.

[2]: def rendu_memo(L, n):
k = len(L)
d = {}
def aux(i, j):

if (i, j) in d:
return d[(i, j)]

if i == 0:
return 0

if j == 0:
return float("inf")

if i - L[j - 1] >= 0:
d[(i, j)] = min(aux(i, j - 1), 1 + aux(i - L[j - 1], j))

else:
d[(i, j)] = aux(i, j - 1)

return d[(i, j)]
return aux(n, k)

rendu_memo([1, 2, 5], 7)

[2]: 2

0.2 2. Plus grand carré dans une matrice
Étant donnée une matrice carrée remplie de 0 ou 1, on souhaite connaître la taille du plus gros
carré de 1 dans cette matrice.
Par exemple, ce nombre est 2 pour la matrice 𝑀 suivante (correspondant au carré en pointillé) :

La case de coordonnés (𝑥, 𝑦) est celle sur la ligne 𝑥, colonne 𝑦. La case de coordonnées (0, 0) est
celle en haut à gauche.

2

On supposera que les indices en arguments des fonctions ne dépassent pas des tableaux ou matrices
correspondants.

Question
Définir M en Python comme liste de listes.

[3]: M = [[1, 0, 0, 0], [0, 0, 1, 1], [0, 1, 1, 1], [0, 1, 0, 1]]

0.2.1 2.1. Méthode naïve

Question
Écrire une fonction est_carree(m, x, y, k) qui détermine si la sous-matrice de m de
taille 𝑘 × 𝑘 dont la case en haut à gauche a pour coordonnées (x, y) ne possède que des
1.

[4]: def est_carree(M, x, y, k):
for i in range(x, x + k):

for j in range(y, y + k):
if M[i][j] != 1:

return False
return True

assert(est_carree(M, 1, 2, 2) and not est_carree(M, 1, 1, 2))

Question
Écrire une fonction contient_carre telle que contient_carre(m, k) renvoie True si
m contient un carré de 1 de taille 𝑘 et False sinon.

[5]: def contient_carre(M, k):
n = len(M)
for i in range(n - k + 1):

for j in range(n - k + 1):
if est_carree(M, i, j, k):

return True
return False

assert(contient_carre(M, 2) and not contient_carre(M, 3))

Question
Écrire une fonction max_carre1 telle que max_carre1(m) renvoie la taille maximum
d’un carré de 1 contenu dans m.

[6]: def max_carre1(M):
n = len(M)
for k in range(n, 0, -1):

if contient_carre(M, k):
return k

return 0

3

max_carre1(M)

[6]: 2

Question
Quelle est la complexité de max_carre1(m) dans le pire cas ?

Réponse
Déterminons la complexité de chacune des fonctions intermédiaires - est_carre_e(M,
x, y, k) est en 𝑂(𝑘2).
- contient_carre(M, k) appelle O(𝑛) fois est_carre, donc est en 𝑂(𝑛2𝑘2).
- max_carre1(M) appelle contient_carre pour 𝑘 = 1, 2, ..., 𝑛, donc est de complexité
∑𝑛

𝑘=1 𝑂(𝑛2𝑘2) = 𝑂(𝑛2 ∑𝑛
𝑘=1 𝑘2).

Comme ∑𝑛
𝑘=1 𝑘2 = 𝑛(𝑛+1)(2𝑛+1)

6 = 𝑂(𝑛3), la complexité totale est 𝑂(𝑛5) .‘

0.2.2 2.2 Méthode améliorée

On va construire une matrice 𝐶 telle que C[x][y] est la taille maximum d’un carré de 1 dans 𝑀
dont la case en bas à droite est M[x][y].

Par exemple, C[1][2] = 1 et C[2][3] = 2 pour la matrice 𝑀 ci-dessus.

Question
Que valent C[0][y] et C[x][0] ?

Réponse
C[0][y] = 0 si M[0][y] = 0 et C[0][y] = 1 sinon.
De même pour C[x][0].
Remarque
C[0][y] et C[x][0] ont ainsi les mêmes valeurs que M[0][y] et M[x][0]. On peut
donc initialiser C comme une copie de M.

Question
Donner une relation de récurrence vérifiée par C[x][y]. On pourra discuter en fonction
de la valeur de M[x][y].

Réponse
-> 1er cas : M[x][y]=0
Il est alors impossible de trouver un carré de 1 : C[x][y] = 0.
-> 2nd cas : M[x][y]=1
On pose l’hypothèse de récurrence C[x][y] = 1 + min(C[x-1][y], C[x][y-1],
C[x-1][y-1]).
Initialisation
Soit il y a un 0 dans les 3 autres du carré, et C[1][1]=1, soit il y a 3 1 et C[1][1]=1+1=2
Héridité
Supposons la relation vraie et évaluons C[x+1][y+1]. Comme précédemment : - si
C[x+1][y]=0 ou C[x][y+1]=0 ou C[x][y]=0, alors C[x+1][y+1]=1 ce qui convient ; -
sinon, notons m=min(C[x][y+1], C[x+1][y], C[x][y]) et M[\alpha,\beta] la case
de la matrice de côté de taille 𝑚 qui contient le 0 associé. On voit que ce 0 appartient
nécessairement au carré de côté 𝑚 + 1 relatif à M|x+1,y+1], ce qui démontre la relation
recherchée.

4

Question
En déduire une fonction max_carre2 telle que max_carre2(M) renvoie la taille maximum
d’un carré de 1 contenu dans M, ainsi que les coordonnées de la case en haut à gauche
d’un tel carré.

[7]: def maxi(l):
max_prov=l[0]
for val in l:

if val>max_prov:
max_prov=val

return max_prov

def max_carre2(m):
c = m.copy()
for i in range(len(m)):

for j in range(len(m[0])):
if m[i][j] == 1:

c[i][j] = 1 + min(c[i - 1][j], c[i][j - 1], c[i - 1][j - 1])
return maxi([maxi(l) for l in c])

max_carre2(M)

[7]: 2

Question
Quelle est la complexité de max_carre2(m), en fonction des dimensions de m? Comparer
avec max_carre1(m).

Réponse
max_carre2(m) est en O(𝑛2) à cause des deux boucles for imbriquées.
C’est donc beaucoup mieux que max_carre1(m) qui est en O(𝑛5).

0.3 3. Problème du sac à dos
On présente le problème classique dit du sac à dos. Un cambrioleur dispose d’un sac à dos de volume
donné qu’il cherche à remplir de façon à maximiser son butin : mieux vaut voler dix bracelets en
diamant qu’un seul ordinateur. Pour cela on adopte la modélisation suivante : - en entrée : une
capacité 𝑐, qui désigne la masse maximale que l’on peut mettre dans le sac, et 𝑛 objets de masses
𝑤1, ..., 𝑤𝑛 et de valeurs 𝑣1, …, 𝑣𝑛 ; - en sortie : la valeur maximum que l’on peut mettre dans le sac.

L’objectif du TP est de comparer différentes approches algorithmiques de ce problème : algorithmes
gloutons vs. algorithme dynamique.

0.3.1 3.1 . Algorithmes gloutons

Un algorithme glouton consiste à ajouter des objets un par un au sac, en choisissant à chaque étape
l’objet qui a l’air le plus intéressant, si son poids n’excède pas la capacité restante du sac.
Suivant l’ordre dans lequel on choisit les objets, on obtient des algorithmes gloutons différents.

Question

5

Écrire une fonction glouton(c, w, v) qui renvoie la valeur totale des objets choisis
par l’algorithme glouton, en considérant les objets dans l’ordre donné par w et v (on
regarde d’abord l’objet de poids w[0] et valeur v[0], puis l’objet de poids w[1] et valeur
v[1]…). Tester avec l’exemple ci-dessous. Le résultat est-il optimal ?

[8]: def glouton(c, w, v):
"""Renvoie la valeur maximum qu'on peut obtenir avec les objets
ordre: liste des objets
c: capacité du sac
w: poids des objets
v: valeur des objets
"""
poids = 0
valeur = 0
for i in range(len(w)):

if poids + w[i] <= c:
poids += w[i]
valeur += v[i]

return valeur

glouton(10, [5, 3, 6], [4, 4, 6])

[8]: 8

0.3.2 Tri des objets

Question
Écrire une fonction combine(L1, L2) qui renvoie la liste des couples (L1[i], L2[i])où
L1 et L2 sont des listes de même longueur.

[9]: def combine(L1, L2):
L = []
for i in range(len(L1)):

L.append((L1[i], L2[i]))
return L

combine([1, 2, 3], [4, 5, 6])

[9]: [(1, 4), (2, 5), (3, 6)]

Question
Écrire une fonction split(c_l) qui pour une liste de couples c_l renvoie deux listes
L1 et L2 telles que split(combine(L1,L2))=L1,L2

[10]: def split(L):
L1 = []
L2 = []
for i in range(len(L)):

L1.append(L[i][0])

6

L2.append(L[i][1])
return L1, L2

split([(1, 4), (2, 5), (3, 6)])

[10]: ([1, 2, 3], [4, 5, 6])

Si L est une liste, L.sort() trie L par ordre croissant. Si L contient des couples, la liste est triée
suivant le premier élément de chaque couple (ordre lexicographique).
On peut donner des arguments à la fonction pour : - pour trier par ordre décroissant :
L.sort(reverse=True) - définir l’ordre de tri selon plusieurs paramètres : L.sort(key=lambda
x: (x[1], x[0]))

Exemple :

[11]: L = [(1, 4),(1, 1),(9, 12), (7, 5), (3, 6),(9,0)]
L.sort()
print(L)
L.sort(key=lambda x: (x[1], x[0]))
print(L)

[(1, 1), (1, 4), (3, 6), (7, 5), (9, 0), (9, 12)]
[(9, 0), (1, 1), (1, 4), (7, 5), (3, 6), (9, 12)]

Question
Écrire une fonction tri_poids(w, v) qui renvoie les listes w2 et v2 obtenues à partir
de w et v en triant les poids par ordre croissant. On utilisera L.sort, combine et split.

[12]: def tri_poids(w, v):
L = combine(w, v)
L.sort()
return split(L)

tri_poids([5, 3, 6], [42, 0, 2])

[12]: ([3, 5, 6], [0, 42, 2])

0.3.3 Stratégies gloutonnes

Question
En déduire une fonction glouton_poids(c, w, v) qui renvoie la valeur totale des ob-
jets choisis par l’algorithme glouton, en considérant les objets dans l’ordre de poids
croissant. On pourra réutiliser glouton.
Cet algorithme est-il toujours optimal ?

[13]: def glouton_poids(c, w, v):
w, v = tri_poids(w, v)
return glouton(c, w, v)

glouton_poids(10, [5, 3, 6], [4, 4, 10])

7

[13]: 8

Réponse
Cet algorithme peut ne pas être optimal si des objets très légers sont présents en grand
nombre et n’ont qu’une valeur faible.

Question
Écrire de même des fonctions tri_valeur(w, v) et glouton_valeur(c, w, v) qui
renvoie la valeur totale des objets choisis par l’algorithme glouton, en considérant les
objets dans l’ordre de valeur décroissante. Cet algorithme est-il toujours optimal ?

[14]: def tri_valeur(w, v):
L = combine(v, w)
L.sort(reverse=True)
L1, L2 = split(L)
return L2, L1

def glouton_valeur(c, w, v):
w, v = tri_valeur(w, v)
return glouton(c, w, v)

glouton_valeur(10, [5, 4, 7], [4, 4, 6])

[14]: 6

Réponse
Cet algorithme peut ne pas être optimal si des objets très lourds n’ont que peu de valeur.

Question
De même, écrire une fonction glouton_ratio(c, w, v) qui renvoie la valeur totale des
objets choisis par l’algorithme glouton, en considérant les objets dans l’ordre de ratio
valeur/poids décroissant. On pourra utiliser deux fois combine.

[15]: def tri_ratio(v, w):
L = combine(v, w)
L = combine([v[i]/w[i] for i in range(len(v))], L)
L.sort(reverse=True)
return split(split(L)[1])

def glouton_ratio(c, w, v):
v, w = tri_ratio(v, w)
return glouton(c, w, v)

glouton_ratio(10, [5, 4, 7], [4, 4, 6])

[15]: 8

8

0.4 3.2. Programmation dynamique
On considère toujours le même problème avec - en entrée : une capacité 𝑐, qui désigne la masse
maximale que l’on peut mettre dans le sac, et 𝑛 objets de masses 𝑤1, ..., 𝑤𝑛 et de valeurs 𝑣1, …, 𝑣𝑛
; - en sortie : la valeur maximum que l’on peut mettre dans le sac.

Soit dp[c][j] la valeur maximum que l’on peut mettre dans un sac de capacité 𝑐, en ne considérant
que les 𝑗 ⩽ 𝑛 premiers objets. On suppose que les poids sont strictement positifs.

Question
Que valent dp[c][0] et dp[0][j] ?

Réponse
dp[i][0] = 0 : sans objet dans le sac, ou dans un sac de capacité nulle, on ne peut
rien emporter.

Question
Exprimer dp[c][j] en fonction de dp[c][j-1] dans le cas où 𝑤𝑗 > 𝑐.
Réponse
dp[c][j] = dp[c][j-1] : on ne peut pas mettre l’objet 𝑗 dans le sac de capacité 𝑐.
Question
Supposons 𝑤𝑗 ≤ 𝑐. Donner une formule de récurrence sur dp[c][j], en distinguant le
cas où l’objet 𝑗 est choisi et le cas où il ne l’est pas.

Réponse

𝑑𝑝[𝑖][𝑗] = max(𝑑𝑝[𝑐][𝑗 − 1]⏟⏟⏟⏟⏟
𝑠𝑎𝑛𝑠𝑝𝑟𝑒𝑛𝑑𝑟𝑒𝑜𝑗

, 𝑑𝑝[𝑐 − 𝑤𝑗][𝑗 − 1] + 𝑣𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑛𝑝𝑟𝑒𝑛𝑎𝑛𝑡𝑜𝑗,𝑠𝑖𝑐−𝑤𝑗≥0

)

$$

Question
En déduire une fonction prog_dyn(c, w, v) qui renvoie la valeur maximum que l’on
peut mettre dans un sac de capacité 𝑐, en ne considérant que les 𝑗 premiers objets, en
remplissant une matrice dp de taille (𝑐 + 1) × (𝑛 + 1).

[16]: def prog_dyn(c, w, v):
n = len(w)
dp = [[0 for j in range(c+1)] for i in range(n+1)]
for i in range(1, n+1):

for j in range(1, c+1):
if j < w[i-1]:

dp[i][j] = dp[i-1][j]
else:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1])
return dp[n][c]

prog_dyn(10, [5, 4, 7], [4, 4, 6])

[16]: 8

9

0.5 3.3. Comparaison des différentes approches
Question
Écrire une fonction genere_instance() qui renvoie un triplet (𝑐, 𝑤, 𝑣), où 𝑐 est un
entier aléatoire entre 1 et 1000 et 𝑤, 𝑣 sont des listes de 100 entiers aléatoires entre 1
et 100.
On importera random pour utiliser random.randint(a, b) qui génère un entier aléa-
toire entre 𝑎 et 𝑏 inclus.

[17]: import random

def genere_instance():
c = random.randint(1, 1000)
w = [random.randint(1, 100) for i in range(100)]
v = [random.randint(1, 100) for i in range(100)]
return c, w, v

Question
Afficher, pour chaque stratégie gloutonne (ordre de poids, ordre de valeur, ordre de
ratio), l’erreur commise par rapport à la solution optimale, en moyennant sur 100 in-
stances générées par genere_instance().
Quelle stratégie gloutonne semble être la plus efficace ?

[18]: gp, gv, gr = 0, 0, 0
for i in range(100):

c, w, v = genere_instance()
sol = prog_dyn(c, w, v)
gp += glouton_poids(c, w, v)/sol
gv += glouton_valeur(c, w, v)/sol
gr += glouton_ratio(c, w, v)/sol

print(f"Glouton poids : {gp/100}")
print(f"Glouton valeur : {gv/100}")
print(f"Glouton ratio : {gr/100}")

Glouton poids : 0.8607063896595035
Glouton valeur : 0.596637180085549
Glouton ratio : 0.9951070140876425

Question
Comparer le temps total d’exécution de la stratégie gloutonne par ratio et de la pro-
grammation dynamique, sur 100 instances générées par genere_instance(). On pourra
importer time et utiliser time.time() pour obtenir le temps actuel en secondes. Con-
clure

[19]: import time

t1, t2 = 0, 0
for i in range(100):

c, w, v = genere_instance()

10

t = time.time()
glouton_poids(c, w, v)
t1 += time.time() - t
t = time.time()
prog_dyn(c, w, v)
t2 += time.time() - t

print(f"Glouton poids : {t1} s")
print(f"Programmation dynamique : {t2} s")

Glouton poids : 0.0021364688873291016 s
Programmation dynamique : 0.4671156406402588 s

0.6 3.4. Obtention de la liste des objets choisis
Question
Réécrire la fonction prog_dyn(c, w, v) pour qu’elle renvoie la liste des objets choisis.
Pour cela, on peut construire la matrice dp et remarquer que :
- si dp[c][j] = dp[c][j-1], alors l’objet 𝑗 n’est pas choisi ; - si dp[c][j] = dp[c -
w_j][j - 1] + v_j, alors l’objet 𝑗 est choisi.
On peut donc construire la liste des objets choisis en remontant la matrice dp à partir
de la case (𝑐, 𝑛).

[20]: def prog_dyn(c, w, v):
n = len(w)
dp = [[0 for j in range(c+1)] for i in range(n+1)]
for i in range(1, n+1):

for j in range(1, c+1):
if j < w[i-1]:

dp[i][j] = dp[i-1][j]
else:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1])

reconstruction de la solution
i, j = n, c
sol = []
while i > 0 and j > 0:

if dp[i][j] == dp[i-1][j]:
i -= 1

else:
sol.append(i-1)
j -= w[i-1]
i -= 1

return sol

prog_dyn(10, [5, 4, 7], [4, 4, 6])
la solution optimale consiste à choisir les objets 1 et 0

[20]: [1, 0]

11

[]:

12

	1. Rendu de monnaie
	2. Plus grand carré dans une matrice
	2.1. Méthode naïve
	2.2 Méthode améliorée

	3. Problème du sac à dos
	3.1 . Algorithmes gloutons
	Tri des objets
	Stratégies gloutonnes

	3.2. Programmation dynamique
	3.3. Comparaison des différentes approches
	3.4. Obtention de la liste des objets choisis

