[1]:

TP_progDynamiqueCorNB

May 8, 2025

T.P. n°5 Programmation dynamique - corrigé

0.1 1. Rendu de monnaie

On se donne une liste L d’entiers ordonnée aq, ..., a; qui représente la valeur faciale de pieces de
monnaie. On souhaite déterminer le nombre minimum r(n, k) de pieces parmi aq,...,a; dont la
somme vaut n de facon a optimiser le rendu de monnaie.

Par exemple, si k =3 et L =[1,2,5] alors : * (7,3) =2 (car 7=1x 541 x 2 et c’est la facon de
rendre 7€ qui utilise le moins de pieces). * r(7,2) =4 (car 7 =3 x 2+ 1).

Remarques :

- On peut utiliser plusieurs fois la méme piece.

- r(0, k) revient a rendre 0€, ce qu’on peut faire avec 0 piece : 7(0, k) = 0 - r(n, 0) revient & n’utiliser
aucune piece, ce qui est impossible si n # 0 : on posera 7(n,0) = oo (float("inf") en Python).

Question
Etablir une relation de récurrence vérifiée par r(n, k). On pourra distinguer deux cas
pour rendre n euros avec les picees aq, ..., a;, selon si a;, est utilisée ou ne 'est pas.

Réponse

Si ay, est utilisée : il faut encore rendre n — a;, euros avec les pieces aq, .., a; (on a le
droit d’utiliser plusieurs fois a;,), d’ou r(n, k) = r(n — a;, k) + 1.

Si ay, n’est pas utilisée, r(n, k) = r(n,k —1).

Dans le cas général, on considere les deux possibilités et on conserve le minimum :

r(n, k) = min(r(n,k — 1),r(n — ay, k) + 1)

Remarque : on ne peut utiliser a;, pour rendre n euros que sin > a;. Sin < a, on a
donc r(n, k) =r(n,k—1).

Question

En déduire une fonction rendu(L,n), programmée dynamiquement, qui renvoie le nom-
bre minimum de pieces requises pour rendre n euros, ou L est la liste des pieces. Pour ce
faire, on définira et remplira la matrice R telle que R [n] [k] contient le nombre minimum
de piéces nécessaire pour rendre n euros en utilisant les j premieres pieces de L.

def rendu(L, n):
k = len(L) # nombre de piéces
R = [[0]J*(k + 1) for _ in range(n + 1)]
for i in range(l, n + 1):
R[i] [0] = float("inf")

[1]:

[2]:

[2]:

for j in range(l, k + 1):
if i - L[j - 1] >= 0:
R[i]1[j] = min(R[il[j - 11, 1 + R[i - L[j - 111031
else:
R[i1[j] = R[i1 [- 1]
return R[-1] [-1]

rendu([1, 2, 51, 7)

2

Remarque

La mise a jour de la matrice s’effectue dans le sens de lecture classique : dans un ligne de gauche
a droite, et de ligne en ligne. La formule de récurrence assure ainsi que seules des valeurs stockées
dans des cases précédemment remplies peuvent étre appelées.

Question bonus
Réécrire la fonction précédente par mémoisation plutdét que par programmation dy-
namique.

On choisit de créer un dictionnaire qui stocke les valeurs de couples r(n,k) a mesure de leur calcul.

def rendu_memo(L, n):
k = len(L)
d = {}
def aux(i, j):
if (i, j) in d:
return d[(i, j)]
if 1 ==
return O
if § ==
return float("inf")
if i - L[j - 1] >= 0:
dl(i, j)] = minCaux(i, j - 1), 1 + aux(i - L[j - 11, j))
else:
al(i, j)1 = aux(d, j - 1)
return 4d[(i, j)]
return aux(n, k)
rendu_memo([1, 2, 5], 7)

2

0.2 2. Plus grand carré dans une matrice

Etant donnée une matrice carrée remplie de 0 ou 1, on souhaite connaitre la taille du plus gros
carré de 1 dans cette matrice.
Par exemple, ce nombre est 2 pour la matrice M suivante (correspondant au carré en pointillé) :

La case de coordonnés (z,y) est celle sur la ligne z, colonne y. La case de coordonnées (0, 0) est
celle en haut a gauche.

On supposera que les indices en arguments des fonctions ne dépassent pas des tableaux ou matrices
correspondants.

Question
Définir M en Python comme liste de listes.

(31: ™ = [I1, 0, 0, 01, [0, O, 1, 1], [o0, 1, 1, 1], [0, 1, O, 1]]

0.2.1 2.1. Méthode naive

Question

Ecrire une fonction est_carree(m, x, y, k) qui détermine si la sous-matrice de m de
taille k x k dont la case en haut & gauche a pour coordonnées (x, y) ne possede que des
1.

[4]: def est_carree(M, x, y, k):
for i in range(x, x + k):
for j in range(y, y + k):
if M[i][j] != 1:
return False
return True

assert (est_carree(M, 1, 2, 2) and not est_carree(M, 1, 1, 2))

Question
Ecrire une fonction contient_carre telle que contient_carre(m, k) renvoie True si
m contient un carré de 1 de taille k£ et False sinon.

[5]: def contient carre(M, k):
n = len(M)
for i in range(n - k + 1):
for j in range(n - k + 1):
if est_carree(M, i, j, k):
return True
return False

assert(contient_carre(M, 2) and not contient_carre(M, 3))

Question
Ecrire une fonction max_carrel telle que max_carrel(m) renvoie la taille maximum
d’un carré de 1 contenu dans m.

[6]: def max_carrel(M):
n = len(M)
for k in range(n, 0, -1):
if contient_carre(M, k):
return k
return O

max_carrel (M)
[6]: 2

Question
Quelle est la complexité de max_carrel(m) dans le pire cas ?

Réponse

Déterminons la complexité de chacune des fonctions intermédiaires - est_carre_e (M,
x, v, k) est en O(k?).

- contient_carre(M, k) appelle O(n) fois est_carre, donc est en O(n?k?).

- max_carrel (M) appelle contient_carre pour k = 1,2, ...,n, donc est de complexité
>, Om?k?) =0(n? Y, | k).

Comme ZZ:1 k% = w = O(n?), la complexité totale est | O(n%) !

0.2.2 2.2 Méthode améliorée

On va construire une matrice C' telle que C[x] [y] est la taille maximum d’un carré de 1 dans M
dont la case en bas a droite est M[x] [y].

Par exemple, C[1] [2] = 1 et C[2] [3] = 2 pour la matrice M ci-dessus.

Question
Que valent C[0] [y] et C[x][0] ?

Réponse

C[0I [yl = 0siM[0][y]l = 0 et C[O][y] = 1 sinon.

De méme pour C[x] [0].

Remarque

C[0] [y] et C[x] [0] ont ainsi les mémes valeurs que M[0] [y] et M[x] [0]. On peut
donc initialiser C comme une copie de M.

Question
Donner une relation de récurrence vérifiée par C[x] [y]. On pourra discuter en fonction
de la valeur de M[x] [y].

Réponse

-> ler cas : M[x] [y]=0

Il est alors impossible de trouver un carré de 1 : C[x] [y] = 0.

-> 2nd cas : M[x] [yl=1

On pose I'’hypothese de récurrence C[x][y] = 1 + min(C[x-1][y], C[x][y-1],
Clx-11[y-11).

Initialisation

Soit il y a un 0 dans les 3 autres du carré, et C[1] [1]=1, soitilya 3 1 et C[1] [1]1=1+1=2
Heéridité

Supposons la relation vraie et évaluons C[x+1] [y+1]. Comme précédemment : - si

C[x+1] [y]1=0 ou C[x] [y+1]1=0 ou C[x] [y]=0, alors C[x+1] [y+1]=1 ce qui convient ; -
sinon, notons m=min (C[x] [y+1], C[x+1][yl, C[x][yl) et M[\alpha,\beta] la case
de la matrice de c6té de taille m qui contient le 0 associé. On voit que ce 0 appartient
nécessairement au carré de coté m + 1 relatif & M|x+1,y+1], ce qui démontre la relation
recherchée.

[7]:

[7]1:

Question

En déduire une fonction max_carre? telle que max_carre2 (M) renvoie la taille maximum
d’un carré de 1 contenu dans M, ainsi que les coordonnées de la case en haut a gauche
d’un tel carré.

def maxi(1l):
max_prov=1[0]
for val in 1:
if val>max_prov:
max_prov=val
return max_prov

def max_carre2(m):
¢ = m.copy()
for i in range(len(m)):
for j in range(len(m[0])):
if m[i][j] == 1:
clil[jl = 1 + min(cli - 11031, clillj - 11, cli - 11[j - 11)
return maxi([maxi(l) for 1 in c])

max_carre2(M)

2

Question
Quelle est la complexité de max_carre2(m), en fonction des dimensions de m? Comparer
avec max_carrel(m).

Réponse

max_carre2(m) est en | & (n?)|a cause des deux boucles for imbriquées.

C’est donc beaucoup mieux que max_carrel(m) qui est en &(n°).

0.3 3. Probléme du sac a dos

On présente le probléme classique dit du sac & dos. Un cambrioleur dispose d’un sac a dos de volume
donné qu’il cherche a remplir de fagcon & maximiser son butin : mieux vaut voler dix bracelets en
diamant qu’un seul ordinateur. Pour cela on adopte la modélisation suivante : - en entrée : une
capacité ¢, qui désigne la masse maximale que ’on peut mettre dans le sac, et n objets de masses
Wy, ..., w,, et de valeurs vy, .., v,, ; - en sortie : la valeur maximum que I’on peut mettre dans le sac.

L’objectif du TP est de comparer différentes approches algorithmiques de ce probleme : algorithmes
gloutons vs. algorithme dynamique.
0.3.1 3.1 . Algorithmes gloutons

Un algorithme glouton consiste a ajouter des objets un par un au sac, en choisissant a chaque étape
I'objet qui a I’air le plus intéressant, si son poids n’excede pas la capacité restante du sac.
Suivant 'ordre dans lequel on choisit les objets, on obtient des algorithmes gloutons différents.

Question

Ecrire une fonction glouton(c, w, v) qui renvoie la valeur totale des objets choisis
par Palgorithme glouton, en considérant les objets dans l'ordre donné par w et v (on
regarde d’abord 'objet de poids w[0] et valeur v[0], puis I'objet de poids w[1] et valeur
v[1]..). Tester avec ’exemple ci-dessous. Le résultat est-il optimal ?

[8]: def glouton(c, w, Vv):
"""Renvoie la valeur mazimum qu'on peut obtenir avec les objets
ordre: liste des objets
c: capacité du sac
w: poids des objets
v: valeur des objets
poids = O
valeur = O
for i in range(len(w)):

if poids + w[i] <= c:
poids += wl[il
valeur += v[i]
return valeur

glouton(10, [5, 3, 61, [4, 4, 6])

[8]: 8

0.3.2 Tri des objets

Question
Ecrire une fonction combine (L1, L2) quirenvoie la liste des couples (L1[i], L2[i])ou

L1 et L2 sont des listes de méme longueur.

[9]: def combine(L1l, L2):
L=10
for i in range(len(L1)):
L.append((L1[i], L2[i]))
return L

combine([1, 2, 3], [4, 5, 6])

[ol: [, 4, (2, 5), (3, 6)]

Question
Ecrire une fonction split(c_1) qui pour une liste de couples c_1 renvoie deux listes

L1 et L2 telles que split(combine(L1,L2))=L1,L2

[10]: | def split(L):
L1 = []
L2 = []
for i in range(len(L)):
L1.append(L[i] [0])

L2.append(L[i] [1])
return L1, L2

split([(1, 4), (2,), (3, 6)])

[101: (I, 2, 31, [4, 5, 61)

Si L est une liste, L.sort() trie L par ordre croissant. Si L contient des couples, la liste est triée

suivant le premier élément de chaque couple (ordre lexicographique).
On peut donner des arguments a la fonction pour : - pour trier par ordre décroissant :
L.sort(reverse=True) - définir 'ordre de tri selon plusieurs parametres : L.sort(key=lambda

x: (x[1], x[0]))
Exemple :

[(11]1:|L = [(1, 4,1, 1,09, 12), (7, 5), (3, 6),(9,0)]
L.sort()
print (L)
L.sort(key=lambda x: (x[1], x[0]))

print (L)

(1, v, @, 4, @, 6), (7, 5, (9, 0, (9, 12)]
e, o, 1, 1, 1, 4, 7, 5, (3, 6), (9, 12)]

Question

Ecrire une fonction tri_poids(w, v) qui renvoie les listes w2 et v2 obtenues & partir
de w et v en triant les poids par ordre croissant. On utilisera L.sort, combine et split

[12]: def tri_poids(w, v):
L = combine(w, v)
L.sort()
return split(L)

tri_poids([5, 3, 6], [42, 0, 2])

[12]: (L3, 5, 61, [0, 42, 2])

0.3.3 Stratégies gloutonnes

Question
En déduire une fonction glouton_poids(c, w, v) qui renvoie la valeur totale des ob-

jets choisis par l'algorithme glouton, en considérant les objets dans l'ordre de poids
croissant. On pourra réutiliser glouton.
Cet algorithme est-il toujours optimal ?

[13]: def glouton_poids(c, w, v):

W, v = tri_poids(w, v)
return glouton(c, w, v)

glouton_poids(10, [5, 3, 6], [4, 4, 10])

[13]: 8

Réponse
Cet algorithme peut ne pas étre optimal si des objets tres légers sont présents en grand
nombre et n’ont qu’une valeur faible.

Question

Ecrire de méme des fonctions tri_valeur(w, v) et glouton_valeur(c, w, v) qui
renvoie la valeur totale des objets choisis par l'algorithme glouton, en considérant les
objets dans 'ordre de valeur décroissante. Cet algorithme est-il toujours optimal ?

[14]: def tri_valeur(w, v):
L = combine(v, w)
L.sort (reverse=True)
L1, L2 = split(L)
return L2, L1

def glouton_valeur(c, w, v):
w, v = tri_valeur(w, v)
return glouton(c, w, V)

glouton_valeur(10, [5, 4, 71, [4, 4, 6])

[14]: 6

Réponse
Cet algorithme peut ne pas étre optimal si des objets tres lourds n’ont que peu de valeur.

Question

De méme, écrire une fonction glouton_ratio(c, w, v) qui renvoie la valeur totale des
objets choisis par 'algorithme glouton, en considérant les objets dans 'ordre de ratio
valeur/poids décroissant. On pourra utiliser deux fois combine.

[15]: def tri_ratio(v, w):
L = combine(v, w)
L = combine([v[i]/w[i] for i in range(len(v))], L)
L.sort(reverse=True)
return split(split(L)[1])

def glouton_ratio(c, w, v):
v, w = tri_ratio(v, w)
return glouton(c, w, v)

glouton_ratio(10, [5, 4, 71, [4, 4, 6€])

[15]: 8

0.4 3.2. Programmation dynamique

On considére toujours le méme probléme avec - en entrée : une capacité ¢, qui désigne la masse
maximale que 'on peut mettre dans le sac, et n objets de masses wy, ..., w,, et de valeurs vy, ..., v,
; - en sortie : la valeur maximum que ’on peut mettre dans le sac.

Soit dp [c] [j] la valeur maximum que 'on peut mettre dans un sac de capacité c, en ne considérant
que les j < n premiers objets. On suppose que les poids sont strictement positifs.

Question
Que valent dp[c] [0] et dp[0] [j] 7

Réponse
dp[i] [0] = 0 : sans objet dans le sac, ou dans un sac de capacité nulle, on ne peut
rien emporter.

Question
Exprimer dp[c] [j] en fonction de dp[c] [j-1] dans le cas ot w; > c.

Réponse
dplc] [j] = dplcl[j-11 : on ne peut pas mettre 'objet j dans le sac de capacité c.

Question
Supposons w; < ¢. Donner une formule de récurrence sur dp[c] [j], en distinguant le
cas ou l'objet j est choisi et le cas ou il ne I'est pas.

Réponse
dpli][j] = max(dplc|[j — 1], dplc —w;][j — 1] + v;)
—————
sansprendreo; enprenanto;,sic—w; >0
$$
Question

En déduire une fonction prog_dyn(c, w, v) qui renvoie la valeur maximum que 'on
peut mettre dans un sac de capacité ¢, en ne considérant que les j premiers objets, en
remplissant une matrice dp de taille (¢ + 1) x (n+ 1).

[16]: def prog_dyn(c, w, v):
n = len(w)
dp = [[0 for j in range(c+1)] for i in range(n+1)]
for i in range(l, n+1):
for j in range(1l, c+1):
if j < wli-1]:
dp[il [j]
else:
dp[il [j]
return dp[n] [c]

dpl[i-1][j]

max(dpl[i-1][j], dpli-1]1[j-wli-11]1 + v[i-11)

prog_dyn(10, [5, 4, 71, [4, 4, 6])

[16]: 8

[17]:

[18]:

[19]:

0.5

3.3. Comparaison des différentes approches

Question

Ecrire une fonction genere_instance() qui renvoie un triplet (c,w,v), ou ¢ est un
entier aléatoire entre 1 et 1000 et w, v sont des listes de 100 entiers aléatoires entre 1
et 100.

On importera random pour utiliser random.randint(a, b) qui génére un entier aléa-
toire entre a et b inclus.

import random

def

gP,
for

genere_instance():

¢ = random.randint (1, 1000)

w = [random.randint(1, 100) for i in range(100)]
v = [random.randint(l, 100) for i in range(100)]
return c, w, V

Question

Afficher, pour chaque stratégie gloutonne (ordre de poids, ordre de valeur, ordre de
ratio), lerreur commise par rapport a la solution optimale, en moyennant sur 100 in-
stances générées par genere_instance().

Quelle stratégie gloutonne semble étre la plus efficace ?

gv, gr = 0, 0, O

i in range(100):

c, w, Vv = genere_instance()

sol = prog_dyn(c, w, V)

gp += glouton_poids(c, w, v)/sol
gv += glouton_valeur(c, w, v)/sol
gr += glouton_ratio(c, w, v)/sol

print (£"Glouton poids : {gp/100}")
print (£"Glouton valeur : {gv/100}")
print (f"Glouton ratio : {gr/100}")

Glouton poids : 0.8607063896595035
Glouton valeur : 0.596637180085549
Glouton ratio : 0.9951070140876425

Question

Comparer le temps total d’exécution de la stratégie gloutonne par ratio et de la pro-
grammation dynamique, sur 100 instances générées par genere_instance (). On pourra
importer time et utiliser time.time () pour obtenir le temps actuel en secondes. Con-
clure

import time

t1,

t2 =0, O

for i in range(100):

c, w, Vv = genere_instance()

10

[20]:

[20] :

t = time.time()
glouton_poids(c, w, v)
tl += time.time() - t
t = time.time()
prog_dyn(c, w, v)

t2 += time.time() - t

print (£"Glouton poids : {t1} s")
print (f"Programmation dynamique : {t2} s")

Glouton poids : 0.0021364688873291016 s
Programmation dynamique : 0.4671156406402588 s

0.6

def

3.4. Obtention de la liste des objets choisis

Question

Réécrire la fonction prog_dyn(c, w, v) pour qu’elle renvoie la liste des objets choisis.
Pour cela, on peut construire la matrice dp et remarquer que :

-si dplcl [j1 = dplcl[j-11, alors l'objet j n’est pas choisi ; - si dplc] [j] = dplc -
w_jl[j - 1] + v_j, alors 'objet j est choisi.

On peut donc construire la liste des objets choisis en remontant la matrice dp a partir
de la case (¢, n).

prog_dyn(c, w, v):
n = len(w)
dp = [[0 for j in range(c+1)] for i in range(n+1)]
for i in range(l, n+1):
for j in range(1l, c+1):
if j < wli-1]:
dp[il [j]
else:
dp[il [j]

dp[i-1]1[j]

max(dpl[i-1]1[j], dpli-1]1[j-wl[i-11]1 + v[i-1]1)

reconstruction de la solution
i, j=mn, c
sol = []
while i > 0 and j > O:
if dplil[j] == dpli-1][j]:

i-=1

else:
sol.append(i-1)
j -= wli-1]
i-=1

return sol

prog_dyn(10, [5, 4, 71, [4, 4, 6])
la solution optimale consiste a choisir les objets 1 et 0O

[1, 0]

11

[1:

12

	1. Rendu de monnaie
	2. Plus grand carré dans une matrice
	2.1. Méthode naïve
	2.2 Méthode améliorée

	3. Problème du sac à dos
	3.1 . Algorithmes gloutons
	Tri des objets
	Stratégies gloutonnes

	3.2. Programmation dynamique
	3.3. Comparaison des différentes approches
	3.4. Obtention de la liste des objets choisis

