
Composition d’ITC 2
MP***

2026-02-13

Sommes sur un chemin dans une matrice

Importations
import random

Matrices pour les vérifications de programme
M1=[[5,1,2],[3,4,5]]
M2=[[random.randint(1,10**3)*random.random() for j in range(20)] for i in range (10)]

Exemples de chemins dans M1
chem1=[(0,0),(0,1),(0,2),(1,2)]

Test d'apertenance "in" à une liste
def estDans(val,liste):

for el in liste:
if el==val:

return True
return False

Préliminaires

Question 1
Pour une matrice de 𝑀𝑚,𝑛(ℝ) on peut faire 𝑚−1 déplacements horizontaux et 𝑛−1 déplacements verticaux
auquel il faut rajouter le premier élément de la liste.

def taille_chemins(mat:list[list[float]])->int:
return len(mat) + len(mat[0]) - 1

taille_chemins(M1),taille_chemins(M2)

(4, 29)

Question 2
On doit vérifier la correction des premier et dernier élément, ainsi que la validité de la formule de récurrence.
Si l’on arrive en fin de boucle c’est bien que la propriété est la bonne.

1

def chemin_coherent(chem:list[(int,int)],mat:list[list[float]])->bool:
if chem[0] != (0, 0) or chem[-1] != (len(mat)-1,len(mat[0])-1) :

return False
for i in range(len(chem)-1):

if chem[i+1] not in [(chem[i][0]+1, chem[i][1]), (chem[i][0], chem[i][1]+1)]:
return False

return True

chemin_coherent(chem1,M1),chemin_coherent(chem1,M2)

(True, False)

Question 3
Aller à droite revient à incrémenter j, d’où l’affectation du booléen à la ligne 5.

def chemin_itineraire(chem:list[(int,int)])->list[bool]:
res = []
y = 1
for i in range(len(chem)-1):

res.append(chem[i+1][1] == chem[i][1]+1)
return res

chemin_itineraire(chem1)

[True, True, False]

Question 4
On utilise ici le transtypage natif en python : pos[ori] est interprété comme pos[0] si ori=True, ce qui
revient à incrémenter le numéro de ligne, et symétriquement pour le numéro de colonne.

def itineraire_chemin(itin:list[bool])->list[(int,int)]:
res = [(0, 0)]
pos = [0, 0]
for ori in itin:

pos[ori] += 1
res.append((pos[0], pos[1]))

return res

itineraire_chemin(chemin_itineraire(chem1)),chem1,itineraire_chemin(chemin_itineraire(chem1))==chem1

([(0, 0), (0, 1), (0, 2), (1, 2)], [(0, 0), (0, 1), (0, 2), (1, 2)], True)

Question 5
On choisit de faire appel à la fonction chemin_coherent précédemment écrite.

def valide_itineraire(mat:list[list[float]],itin:list[bool])->bool:
chem=itineraire_chemin(itin)
return chemin_coherent(chem,mat)

valide_itineraire(M1,chemin_itineraire(chem1))

True

2

Exploration exhaustive

Question 6
Comme son nom l’indique, ce programme calcule la valeur maximale d’un chemin dans la matrice par force
brute, c’est à dire en testant tous les chemins. Le programme récursifs montre le principe : la somme est
initialisée à la valeur de la case en haut à gauche(l10). Les appels récursifs correspondent aux situations
suivantes :

• l.6 : arrivé à la dernière ligne, on ne peut progresser que selon une colonne
• l.8 : arrivé à la dernière colonne, on ne peut progresser que selon une ligne
• l.9. : on choisit d’avancer ou de descendre suivant ce qui permet de maximiser la somme de la partie
aval de la matrice

Question 7
Tous les chemins sont testés, et l’on peut se poser 𝑚−1 fois la question de descendre parmi 𝑛+𝑚−2 étapes.
La complexité est donc en (𝑛+𝑚−2

𝑛−1) = (𝑛+𝑚+−2
𝑚−1), soit une complexité exponentielle en les dimensions de

la matrice.
C’est beaucoup trop et en pratique l’utilisation d’une récursion risque fort de déclencher un dépassement de
pile pour des matrices que l’on pourrait rencontrer comme arguments.
La complexité en espace est également élevée (toujours en rapport avec la pile d’appels), donc à ce stade pour
éviter que Python cause un problème on peut simuler la pile soi-même en ajoutant quelques lignes, ce qui permet
de se passer de la récursion.

Algorithme glouton v.1

Question 8
Pour suivre les indications de l’énoncé, on doit conserver l’appel récursif mais sans chercher à trouver lequel
des deux chemins est maximal. Cela se traduit par la modification des lignes 7 (on suit le max des deux
valeurs) et 9 (pas d’hésitation dans l’appel récursif).

def somme_maximale_glouton1(mat:list[list[float]])->float :
def somme (i:int , j:int)->float :

if i == len(mat)-1 and j == len(mat[0])-1:
return mat[i][j]

if i == len(mat)-1:
return mat[i][j] + somme (i, j+1)

if j == len(mat[0])-1:
return mat[i][j] + somme(i+1, j)

lignes modifiées
if mat[i+1][j] >= mat[i][j+1]:

return mat[i][j] + somme(i+1, j)
else:

return mat[i][j] + somme(i, j+1)
return somme (0, 0)

somme_maximale_glouton1(M2)

7982.774615308495

Question 9
Cette fois-ci un seul chemin est considéré, donc la complexité passe en 𝒪(𝑚 + 𝑛), toujours avec les mêmes
notations.

3

Question 10
Soit la matrice suivante :

𝑀 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 2
1 0
1 0
… …
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

L’algorithme glouton fera d’abord aller à droite, puis il faudra forcément descendre jusqu’à la dernière, pour
une somme de 3, alors que descendre constamment donne une somme de n.

Algorithme glouton v.2

Question 11
On choisit de procéder en deux temps. On commence par écrire un programme max_mat qui détermine la
position de la valeur maximale d’une matrice. Il faut veiller à exclure le cas des coins supérieurs et inférieurs

def max_mat(mat:list[list[float]])->(int,int):
imax,jmax = 0, 1
m,n=len(mat),len(mat[0])
for i in range(m):

for j in range(n):
if (i,j) != (0,0) and (i,j) != (m-1,n-1) and mat[i][j] > mat[imax][jmax]:

imax,jmax=i,j
return imax,jmax

max_mat(M1),max_mat(M2)

((1, 1), (8, 6))

On définit ensuite deux sous-matrices qui ont pour coin inférieur droit et supérieur gauche le coefficient
précédemment déterminé.
On applique à chacune de ces sous-matrices le programme précédent.

def somme_maximale_glouton2(mat)->int:
imax, jmax = max_mat(mat)
m,n=len(mat),len(mat[0])
mat1 = [[mat[i][j] for j in range(jmax+1)] for i in range(imax+1)]
mat2 = [[mat[i][j] for j in range(jmax, n)] for i in range(imax, m)]
somme1 = somme_maximale_glouton1(mat1)
somme2 = somme_maximale_glouton1(mat2)
return somme1 + somme2 - mat[imax][jmax]

somme_maximale_glouton2(M2)

7982.774615308496

Question 12
Le calcul du maximum de la matrice est en 𝒪(𝑚𝑛). Par la suite, on construit avec la même complexité les
deux sous-matrices.
La consommation enmémoire n’était en pratique pas nécessaire, mais adapter la fonction somme_maximale_glouton1

4

aurait nécessité plus de temps et d’énergie.
Les deux appels somme_maximale_glouton1 sont de complexité 𝒪(𝑚 + 𝑛) d’après ce qui précède, donc
on a une complexité totale en 𝒪(𝑚𝑛)

Question 13
Le contre-exemple précédent reste valable, car il n’y a qu’un chemin possible une fois le maximum calculé et
considéré comme un point de passage nécessaire.
On pourrait par ailleurs trouver des cas où un des algorithmes gloutons donne une réponse strictement
meilleure que l’autre et vice-versa.

Programmation dynamique

Question 14
Le principe de l’algorithme est de déterminer pour chaque case de la matrice quelle est la plus grande valeur
d’un chemin qui terminerait dans cette case. Cette valeur s’obtient en additionnant l’entier stocké dans la
case et la plus grande valeur d’un chemin qui terminerait dans la case du haut (si elle existe) ou de gauche (si
elle existe), en prenant le maximum quand il y a deux possibilités.
Trois éléments sont donc à initialiser : la première case, ainsi que les premières ligne et colonne.

⎧{
⎨{⎩

𝑠0,0 = 𝑚0,0

𝑠𝑖,0 = 𝑚𝑖,0 + 𝑠𝑖−1,0

𝑠0,𝑗 = 𝑚0,𝑗 + 𝑠0,𝑗−1

Pour le cas général, on a vu que :

𝑠𝑖,𝑗 = 𝑚𝑖,𝑗 + 𝑚𝑎𝑥(𝑠𝑖−1,𝑗, 𝑠𝑖,𝑗−1)

Question 15

def maxsomme(mat:list[list[float]])->float:
nl,nc = len(mat),len(mat[0])
maxsommes = [[None for _ in range(nc)] for _ in range(nl)]
maxsommes[0][0] = mat[0][0]
for i in range(1, nl):

maxsommes[i][0] = maxsommes[i-1][0] + mat[i][0]
for i in range(1, nc):

maxsommes[0][i] = maxsommes[0][i-1] + mat[0][i]
for i in range(1, nl):

for j in range(1, nc):
maxsommes[i][j] = mat[i][j] + max(maxsommes[i-1][j], maxsommes[i][j-1])

return maxsommes[-1][-1]

maxsomme(M2)

11811.878983288692

Question 16
Chaque case n’est considérée qu’une fois avec un traitement constant, la complexité est donc linéaire en le
nombre total d’éléments de la matrice, soit 𝒪(𝑚 × 𝑛)).
La complexité en espace est également de l’ordre de la taille de la matrice.

5

Problème 2 : Un peu de rugby

Mini-base de vérification

joueurs={"France":["Lucu","Barré","Dupont","Ramos"],"Angleterre":["George","Ford"]}
cr1=[["Dupont","essai","2"],["Ramos","transformation","3"]]
cr2=[["Ramos","transformation","3"],["Dupont","essai","2"]]

Question 17
Commençons par remarquer que les transformations ne pouvant exister sans essai, les 3 possibilités d’incré-
ment du score sont +3,+5 et +7 (sympatiquement tous premiers).
On peut donc proposer une approche force brute : on écrit 𝑛 = 7𝑚 + 5𝑝 + 3𝑞 et l’on teste tous les triplets
𝑚, 𝑝, 𝑞 possibles.

def degenerescence_score(n:int)->int:
res=0
m,p,q=n//7+1,n//5+1,n//3+1
for i in range(m):

for j in range(p):
for k in range(q):

if 7*i+5*j+3*k==n:
res+=1

return res

degenerescence_score(50)

16

Un peu plus élégamment, on peut réaliser deux boucles imbriquées où l’on retire au score les multiples de 7
et 5 successifs et l’on teste si le résultat est un multiple de 3.

def degenerescence_score(n:int)->int:
res = 0
for n1 in range(n, -1, -7):

for n2 in range(n1, -1, -5):
if n2 % 3 == 0:

res+=1
return res

degenerescence_score(50)

16

Question 18

def trouve_equipe(joueur:str)->str :
for equipe in joueurs:

if estDans(joueur,joueurs[equipe]):
return equipe

return False

print(trouve_equipe("Dupont"),trouve_equipe("Lomu"))

6

France False

La complexité est linéaire en le nombre total de joueurs, car il s’agit de parcourir des listes. Il aurait pu
être intéressant d’utiliser une structure d’ensemble / de dictionnaire pour les valeurs associées à chaque
équipe, pour accélérer virtuellement la recherche.

Question 19
Il n’y a ici qu’à parcourir les listes et stocker les éléments au fil de leur lecture.

def construit_dict_equipe()->dict:
dic_joueurs = dict()
for equipe in joueurs:

for joueur in joueurs[equipe]:
dic_joueurs[joueur] = equipe

return dic_joueurs

dic_joueurs=construit_dict_equipe()
dic_joueurs

{'Lucu': 'France',
'Barré': 'France',
'Dupont': 'France',
'Ramos': 'France',
'George': 'Angleterre',
'Ford': 'Angleterre'}

Question 20
Sans indication particulière de l’énoncé, on choisit ici le tri insertion (en se disant que les listes doivent
normalement être quasi-triées).

def ordonne_cr(cr:list[list[str,str,float]]):
for indice,even in enumerate(cr):

valeur=even[2]
j=indice
while j>0 and valeur<cr[j-1][2]:

cr[j]=cr[j-1]
j=j-1

cr[j]=even

print(cr2)
ordonne_cr(cr2)
print(cr2)

Question 21
Les causes d’erreurs sont liées aux transformations :

• la première entrée est une transformation
• une transformation est tapée par un joueur de l’équipe adverse
• une transformation n’est pas précédée d’un essai

7

def coherence(cr:list[list[str,str,float]])->bool :
dic_joueurs=construit_dict_equipe()
for i in range(len(cr)):

if cr[i][1] == "transformation":
if i == 0 or dic_joueurs[cr[i][0]] != dic_joueurs[cr[i-1][0]] or cr[i-1][1] != "essai":

return False
return True

print(coherence(cr2))
ordonne_cr(cr2)
print(cr2,coherence(cr2))

False
[['Dupont', 'essai', '2'], ['Ramos', 'transformation', '3']] True

Question 22
Il suffit ici de parcours tout le compte-rendu est d’incrémenter les scores des deux équipes au fur et à mesure
de la lecture. On choisit de créer un dictionnaire des points pour alléger l’écriture.

def resultat(cr, e1, e2):
dic_joueurs=construit_dict_equipe()
points_par_action = { "essai" : 5, "transformation" : 2, "drop" : 3, "penalite" : 3 }
resultat = { e1 : 0, e2 : 0 }
for j, t, _ in cr:

resultat[dic_joueurs[j]] += points_par_action[t]
return resultat[e1], resultat[e2]

resultat(cr2,"France","Afrique du Sud")

(7, 0)

Question 23
Il suffit ici de parcourir la table Equipe.

SELECT eq_nom
FROM Equipe

Question 24
On utilise ici des fonctions d’agrégations sans nécessité de faire de regroupement.

SELECT MIN(de_tempsJeu), MAX(de_tempsJeu)
FROM Deroulement

Question 25
On réalise ici une jointure selon l’identifiant de l’équipe pour déterminer tous les joueurs.

SELECT jo_nom
FROM Equipe

JOIN Joueur
ON Equipe.eq_id = Joueur.eq_id

WHERE eq_nom = "France"

8

Question 26
On repart de la jointure précédente, en ajoutant la table Deroulement qui permet d’associer aux joueurs les
points qu’ils ont inscrit.

SELECT DISTINCT jo_nom
FROM Equipe

JOIN Joueur
ON Equipe.eq_id = Joueur.eq_id

JOIN Deroulement
ON Joueur.jo_id = Deroulement.jo_id

WHERE eq_nom = "France"
AND de_evenement = "essai"

Question 27
On réalise ici une jointure pour déterminer tous les pays ayant joué contre la France. On utilise ensuite une
fonction d’agrégation pour déterminer les noms des pays intéressants.

SELECT Eq2.eq_nom, AVG(pa_score1) AS moy
FROM Partie

JOIN Equipe AS Eq1
ON Eq1.eq_id = pa_equipe1

JOIN Equipe AS Eq2
ON Eq2.eq_id = pa_equipe2

WHERE Eq1.eq_nom = "France"
GROUP BY pa_equipe2
HAVING moy>20

9

	Sommes sur un chemin dans une matrice
	Préliminaires
	Exploration exhaustive
	Algorithme glouton v.1
	Algorithme glouton v.2
	Programmation dynamique
	Problème 2 : Un peu de rugby

