chProgDynamiqueNB
May 8, 2025

[1: import pylab as pl
import time

1 2. Piles et files
1.1 Appli 2 : Notation polonaise inverse

[1]: def RPN(1):
pile=[]
for el in 1:
if el not in ('x','+'):
pile.append(el)
elif el=="+"':
pile.append(pile.pop()+pile.pop())
else:
pile.append(pile.pop()*pile.pop())
print(pile)

RPN([2,3,4,'x','+'])

[2]

[2, 3]

[2, 3, 4]

[2, 12]

[14]

2 3. Dictionnaires

2.1 3.3. Fonction de hachage
Différents types peuvent étre hachés

[2]: hash(12345), hash("12345"), hash((1,2,3,4,5))
[2]: (12345, -7313169373550564608, -5659871693760987716)

Mais pas les listes

[3]: hash([1,2,3,4,5])
Traceback (most recent call last):
File"<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

In[3], line 2
Traceback (most recent call last):

~

SyntaxError: invalid syntax. Perhaps you forgot a comma?

La fonction de hachage est localement injective, c’est-a-dire qu’elle est treés sensible aux petites
variations des clefs.

[1:|hash("Dupont") ,hash("Dupond") ,hash("Dupont")-hash("Dupond")

[J: (8826115988355940694, -550959240832759317, 9377075229188700011)

2.2 3.4 Les dictionnaires en pratique
2.2.1 3.4.1 Création d’un dictionnaire

[]:|prix = {"carottes": 1.49 ,"brocolis":2.49 ,"pommes":0.99}
dico_vide = {}
dico_vide2 = dict()

prix,dico_vide,dico_vide2
[1: ({'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99}, {}, {})
[1: prix["pommes"]
[1:0.99

[1: prix["avocats"] = 4.99
print (prix)

{'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

[1: prix.pop("carottes")
print (prix)

{'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

[]1:

[]:

[]:

[]:

[]:

[]1:

[]1:

2.2.2 3.4.2 Parcours d’un dictionnaire

for

clef in prix.keysQ:

print(clef)

brocolis
pommes
avocats

for

clef in prix:
print(clef)

brocolis
pommes
avocats

for

2.49
0.99
4.99

for

valeur in prix.values():
print(valeur)

clef, valeur in prix.items():

print("Le prix des {} est de {}€/kg".format(clef,valeur))

Le prix des brocolis est de 2.49€/kg
Le prix des pommes est de 0.99€/kg
Le prix des avocats est de 4.99€/kg

3 4. Programmation dynamique

3.1

4.1. Triangle de Pascal

3.1.1 Calcul récursif naif des coefficients binomiaux

def

def

mesure_duree(f,arg):

nmnn

retourne le résultat d'exécution de la fonction f avec arg passé en argument

nimnn

tl=time.perf_counter ()

res=f (xarg)

t2=time.perf_counter ()

print ("C{}={} effectué en {:.le}s".format(arg,res,t2-t1))

binom(n, p):
if p==0 or n ==
return 1

return binom(n-1, p-1) + binom(n-1, p)

mesure_duree (binom, (8,2))

C(8, 2)=28 effectué en 2.1e-05s
[]: mesure_duree(binom, (8,4))

C(8, 4)=70 effectué en 2.0e-05s
[1: mesure_duree(binom, (30,15))

C(30, 15)=155117520 effectué en 2.0e+01s

3.1.2 Version itérative du calcul des coefficients binomiaux

[1: def binom_it(n, p):
t = pl.zeros((n + 1, p + 1))
for i in range(0, n + 1):

tli, 0] = 1
for i in range(l, p + 1):
tli, il =1

for i in range(2, n + 1):
for j in range(l, min(p, i) + 1):
tli, j1 = tli -1, j - 1] + t[i - 1, j]
return t[n, pl

[1: mesure_duree(binom_it, (300,150))

C(300, 150)=9.375970277282748e+88 effectué en 2.6e-02s

3.1.3 Version récursive avec memoisation

[1: binom_dict = {}

def binom_mem(n, p):
if (n, p) not in binom_dict:
if p == 0 or n == p:
binom_dict[(n, p)] =1
else:
binom_dict[(n, p)] = binom mem(n - 1, p - 1) + binom_mem(n - 1, p)
return binom_dict[(n, p)]

[]: mesure_duree(binom_mem, (30,15))

C(30, 15)=155117520 effectué en 2.8e-04s

Remarque culturelle Le code suivant permet d’associer automatiquement un dictionnaire a la
fonction récursive utilisée.

[]1:

[1:

[]:

[1:

[1:

[]1:

from functools import

@lru_cache
def binom(n, p):

if p==0 or n ==
return 1

return binom(n-1, p-1) + binom(n-1, p)

1ru_cache

p:

mesure_duree (binom, (30,15))

C(30, 15)=155117520 effectué en 2.5e-04s

3.2 4.2. Algorithme de Floyd-Warshall

def floydwarshall(M):

n
N

return N

M=pl.array ([
[0,float('inf')

M. shape [0]

M.copy ()
for k in range(n):
for i in range(n):
for j in range(n):

N[i, j] = min(N[i, jI, N[i, k] + N[k, j1)

, float('inf')

, float('inf')

, -1 , float('inf')],

[1,0,float('inf'),2,float('inf"'),float('inf')],
[float('inf'),2,0,float('inf'),float('inf'),6],
[-3,float('inf'),float('inf'),0,float('inf') ,float('inf')],
[float('inf'),7,float('inf'),4,0,float('inf')],
[float('inf'),5,-4,float('inf'),float('inf"'),0]

D

M

array([[0., inf,
(1., O.,
[inf, 2.,
[-3., inf,
[inf, 7.,
[inf, 5.,

floydwarshall (M)

array([[O 6.,
[-1 0.,
[1. 2.,
[-3., 3.,
[1 7.,
[-3., -2.,

inf,
inf,

inf,
inf,

inf,
inf,

inf,
inf,

inf,

inf,

inf,

O P> OB DNW

inf,
inf,
inf,

inf,

inf],
inf],
6.1,
inf],
inf],
0.1

inf],
inf],
6.1,
inf],
inf],
0.11)

[]1:

[1:

Complément : fermeture transitive d’un graphe Considérons de nouveau un graphe non
pondéré, orienté ou non. Le probleme de la fermeture transitive consiste a déterminer si deux
sommets a et b peuvent étre reliés par un chemin allant de a a b. Pour le résoudre, nous allons
utiliser la matrice d’adjacence associée a ce graphe, mais cette fois en utilisant les valeurs booléennes
True pour dénoter 'existence d’une aréte et False pour en marquer ’absence. Remplacons main-
tenant dans I'algorithme de Floyd-Warshall la relation de récurrence sur les coefficients des matrices

M®) par
(k+1) _ (k)

m m;.” ou m(k) et m(k)
ij — My i,k+1 k+1,5

e . , k) . .
On peut prouver de facon similaire a ce que nous avons fait que le booléen mg j) dénote 'existence
d’un chemin reliant les sommets v, et v; en ne passant que par les sommets vy, vy, ..., v;. a matrice
M) résout le probleme de la fermeture transitive.

L’algorithme ainsi modifié est connu sous le nom d’algorithme de Warshall :

def warshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):
for i in range(n):
for j in range(n):
N[i, j1 = N[i, j] or N[i, k] and N[k, j]

return N

N=M. copy)
n = M.shape[0]
for i in range(n):
for j in range(n):
if N[i,jl==float('inf'):
N[i,jl=False
else:
N[i,jl=True
warshall(N)

	2. Piles et files
	Appli 2 : Notation polonaise inverse

	3. Dictionnaires
	3.3. Fonction de hachage
	3.4 Les dictionnaires en pratique
	3.4.1 Création d'un dictionnaire
	3.4.2 Parcours d'un dictionnaire

	4. Programmation dynamique
	4.1. Triangle de Pascal
	Calcul récursif naïf des coefficients binomiaux
	Version itérative du calcul des coefficients binomiaux
	Version récursive avec memoisation

	4.2. Algorithme de Floyd-Warshall

