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[ 1: import pylab as pl
import time

1 2. Piles et files
1.1 Appli 2 : Notation polonaise inverse

[1]: def RPN(1):
pile=[]
for el in 1:
if el not in ('x','+'):
pile.append(el)
elif el=="+"':
pile.append(pile.pop()+pile.pop())
else:
pile.append(pile.pop()*pile.pop())
print(pile)

RPN([2,3,4,'x','+'])

[2]

[2, 3]

[2, 3, 4]

[2, 12]

[14]

2 3. Dictionnaires

2.1 3.3. Fonction de hachage
Différents types peuvent étre hachés

[2]: hash(12345), hash("12345"), hash((1,2,3,4,5))
[2]: (12345, -7313169373550564608, -5659871693760987716)

Mais pas les listes



[3]: hash([1,2,3,4,5])
Traceback (most recent call last):
File"<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

In[3], line 2
Traceback (most recent call last):

~

SyntaxError: invalid syntax. Perhaps you forgot a comma?

La fonction de hachage est localement injective, c’est-a-dire qu’elle est treés sensible aux petites
variations des clefs.

[ 1:|hash("Dupont") ,hash("Dupond") ,hash("Dupont")-hash("Dupond")

[ J: (8826115988355940694, -550959240832759317, 9377075229188700011)

2.2 3.4 Les dictionnaires en pratique
2.2.1 3.4.1 Création d’un dictionnaire

[ ]:|prix = {"carottes": 1.49 ,"brocolis":2.49 ,"pommes":0.99}
dico_vide = {}
dico_vide2 = dict()

prix,dico_vide,dico_vide2
[ 1: ({'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99}, {}, {})
[ 1: prix["pommes"]
[ 1:0.99

[ 1: prix["avocats"] = 4.99
print (prix)

{'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

[ 1: prix.pop("carottes")
print (prix)

{'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}
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[]:
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2.2.2 3.4.2 Parcours d’un dictionnaire

for

clef in prix.keysQ:

print(clef)

brocolis
pommes
avocats

for

clef in prix:
print(clef)

brocolis
pommes
avocats

for

2.49
0.99
4.99

for

valeur in prix.values():
print(valeur)

clef, valeur in prix.items():

print("Le prix des {} est de {}€/kg".format(clef,valeur))

Le prix des brocolis est de 2.49€/kg
Le prix des pommes est de 0.99€/kg
Le prix des avocats est de 4.99€/kg

3 4. Programmation dynamique

3.1

4.1. Triangle de Pascal

3.1.1 Calcul récursif naif des coefficients binomiaux

def

def

mesure_duree(f,arg):

nmnn

retourne le résultat d'exécution de la fonction f avec arg passé en argument

nimnn

tl=time.perf_counter ()

res=f (xarg)

t2=time.perf_counter ()

print ("C{}={} effectué en {:.le}s".format(arg,res,t2-t1))

binom(n, p):
if p==0 or n ==
return 1



return binom(n-1, p-1) + binom(n-1, p)

mesure_duree (binom, (8,2))

C(8, 2)=28 effectué en 2.1e-05s
[ ]: mesure_duree(binom, (8,4))

C(8, 4)=70 effectué en 2.0e-05s
[ 1: mesure_duree(binom, (30,15))

C(30, 15)=155117520 effectué en 2.0e+01s

3.1.2 Version itérative du calcul des coefficients binomiaux

[ 1: def binom_it(n, p):
t = pl.zeros((n + 1, p + 1))
for i in range(0, n + 1):

tli, 0] = 1
for i in range(l, p + 1):
tli, il =1

for i in range(2, n + 1):
for j in range(l, min(p, i) + 1):
tli, j1 = tli -1, j - 1] + t[i - 1, j]
return t[n, pl

[ 1: mesure_duree(binom_it, (300,150))

C(300, 150)=9.375970277282748e+88 effectué en 2.6e-02s

3.1.3 Version récursive avec memoisation

[ 1: binom_dict = {}

def binom_mem(n, p):
if (n, p) not in binom_dict:
if p == 0 or n == p:
binom_dict[(n, p)] =1
else:
binom_dict[(n, p)] = binom mem(n - 1, p - 1) + binom_mem(n - 1, p)
return binom_dict[(n, p)]

[ ]: mesure_duree(binom_mem, (30,15))

C(30, 15)=155117520 effectué en 2.8e-04s

Remarque culturelle Le code suivant permet d’associer automatiquement un dictionnaire a la
fonction récursive utilisée.
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from functools import

@lru_cache
def binom(n, p):

if p==0 or n ==
return 1

return binom(n-1, p-1) + binom(n-1, p)

1ru_cache

p:

mesure_duree (binom, (30,15))

C(30, 15)=155117520 effectué en 2.5e-04s

3.2 4.2. Algorithme de Floyd-Warshall

def floydwarshall(M):

n
N

return N

M=pl.array ([
[0,float('inf')

M. shape [0]

M.copy ()
for k in range(n):
for i in range(n):
for j in range(n):

N[i, j] = min(N[i, jI, N[i, k] + N[k, j1)

, float('inf')

, float('inf')

, -1 , float('inf')],

[1,0,float('inf'),2,float('inf"'),float('inf')],
[float('inf'),2,0,float('inf'),float('inf'),6],
[-3,float('inf'),float('inf'),0,float('inf') ,float('inf')],
[float('inf'),7,float('inf'),4,0,float('inf')],
[float('inf'),5,-4,float('inf'),float('inf"'),0]

D

M

array([[ 0., inf,
(1., O.,
[inf, 2.,
[-3., inf,
[inf, 7.,
[inf, 5.,

floydwarshall (M)

array([[ O 6.,
[-1 0.,
[ 1. 2.,
[-3., 3.,
[ 1 7.,
[-3., -2.,

inf,
inf,

inf,
inf,

inf,
inf,

inf,
inf,

inf,

inf,

inf,

O P> OB DNW

inf,
inf,
inf,

inf,

inf],
inf],
6.1,
inf],
inf],
0.1

inf],
inf],
6.1,
inf],
inf],
0.11)
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Complément : fermeture transitive d’un graphe Considérons de nouveau un graphe non
pondéré, orienté ou non. Le probleme de la fermeture transitive consiste a déterminer si deux
sommets a et b peuvent étre reliés par un chemin allant de a a b. Pour le résoudre, nous allons
utiliser la matrice d’adjacence associée a ce graphe, mais cette fois en utilisant les valeurs booléennes
True pour dénoter 'existence d’une aréte et False pour en marquer ’absence. Remplacons main-
tenant dans I'algorithme de Floyd-Warshall la relation de récurrence sur les coefficients des matrices

M®) par
(k+1) _ (k)

m m;.” ou m(k) et m(k)
ij — My i,k+1 k+1,5

e . , k) . .
On peut prouver de facon similaire a ce que nous avons fait que le booléen mg j) dénote 'existence
d’un chemin reliant les sommets v, et v; en ne passant que par les sommets vy, vy, ..., v;. a matrice
M) résout le probleme de la fermeture transitive.

L’algorithme ainsi modifié est connu sous le nom d’algorithme de Warshall :

def warshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):
for i in range(n):
for j in range(n):
N[i, j1 = N[i, j] or N[i, k] and N[k, j]

return N

N=M. copy )
n = M.shape[0]
for i in range(n):
for j in range(n):
if N[i,jl==float('inf'):
N[i,jl=False
else:
N[i,jl=True
warshall(N)
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