
chProgDynamiqueNB

May 8, 2025

[]: import pylab as pl
import time

1 2. Piles et files
1.1 Appli 2 : Notation polonaise inverse

[1]: def RPN(l):
pile=[]
for el in l:

if el not in ('x','+'):
pile.append(el)

elif el=='+':
pile.append(pile.pop()+pile.pop())

else:
pile.append(pile.pop()*pile.pop())

print(pile)

RPN([2,3,4,'x','+'])

[2]
[2, 3]
[2, 3, 4]
[2, 12]
[14]

2 3. Dictionnaires
2.1 3.3. Fonction de hachage
Différents types peuvent être hachés

[2]: hash(12345), hash("12345"), hash((1,2,3,4,5))

[2]: (12345, -7313169373550564608, -5659871693760987716)

Mais pas les listes

1

[3]: hash([1,2,3,4,5])
Traceback (most recent call last):
File"<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Cell In[3], line 2
Traceback (most recent call last):

^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

La fonction de hachage est localement injective, c’est-à-dire qu’elle est très sensible aux petites
variations des clefs.

[]: hash("Dupont"),hash("Dupond"),hash("Dupont")-hash("Dupond")

[]: (8826115988355940694, -550959240832759317, 9377075229188700011)

2.2 3.4 Les dictionnaires en pratique
2.2.1 3.4.1 Création d’un dictionnaire

[]: prix = {"carottes": 1.49 ,"brocolis":2.49 ,"pommes":0.99}
dico_vide = {}
dico_vide2 = dict()

prix,dico_vide,dico_vide2

[]: ({'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99}, {}, {})

[]: prix["pommes"]

[]: 0.99

[]: prix["avocats"] = 4.99
print(prix)

{'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

[]: prix.pop("carottes")
print(prix)

{'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

2

2.2.2 3.4.2 Parcours d’un dictionnaire

[]: for clef in prix.keys():
print(clef)

brocolis
pommes
avocats

[]: for clef in prix:
print(clef)

brocolis
pommes
avocats

[]: for valeur in prix.values():
print(valeur)

2.49
0.99
4.99

[]: for clef, valeur in prix.items():
print("Le prix des {} est de {}€/kg".format(clef,valeur))

Le prix des brocolis est de 2.49€/kg
Le prix des pommes est de 0.99€/kg
Le prix des avocats est de 4.99€/kg

[]:

3 4. Programmation dynamique
3.1 4.1. Triangle de Pascal
3.1.1 Calcul récursif naïf des coefficients binomiaux

[]: def mesure_duree(f,arg):
"""
retourne le résultat d'exécution de la fonction f avec arg passé en argument
"""
t1=time.perf_counter()
res=f(*arg)
t2=time.perf_counter()
print("C{}={} effectué en {:.1e}s".format(arg,res,t2-t1))

[]: def binom(n, p):
if p == 0 or n == p:

return 1

3

return binom(n-1, p-1) + binom(n-1, p)

mesure_duree(binom,(8,2))

C(8, 2)=28 effectué en 2.1e-05s

[]: mesure_duree(binom,(8,4))

C(8, 4)=70 effectué en 2.0e-05s

[]: mesure_duree(binom,(30,15))

C(30, 15)=155117520 effectué en 2.0e+01s

3.1.2 Version itérative du calcul des coefficients binomiaux

[]: def binom_it(n, p):
t = pl.zeros((n + 1, p + 1))
for i in range(0, n + 1):

t[i, 0] = 1
for i in range(1, p + 1):

t[i, i] = 1
for i in range(2, n + 1):

for j in range(1, min(p, i) + 1):
t[i, j] = t[i - 1, j - 1] + t[i - 1, j]

return t[n, p]

[]: mesure_duree(binom_it,(300,150))

C(300, 150)=9.375970277282748e+88 effectué en 2.6e-02s

3.1.3 Version récursive avec memoisation

[]: binom_dict = {}

def binom_mem(n, p):
if (n, p) not in binom_dict:

if p == 0 or n == p:
binom_dict[(n, p)] = 1

else:
binom_dict[(n, p)] = binom_mem(n - 1, p - 1) + binom_mem(n - 1, p)

return binom_dict[(n, p)]

[]: mesure_duree(binom_mem,(30,15))

C(30, 15)=155117520 effectué en 2.8e-04s

Remarque culturelle Le code suivant permet d’associer automatiquement un dictionnaire à la
fonction récursive utilisée.

4

[]: from functools import lru_cache

@lru_cache
def binom(n, p):

if p == 0 or n == p:
return 1

return binom(n-1, p-1) + binom(n-1, p)

mesure_duree(binom,(30,15))

C(30, 15)=155117520 effectué en 2.5e-04s

3.2 4.2. Algorithme de Floyd-Warshall

[]: def floydwarshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):

for i in range(n):
for j in range(n):

N[i, j] = min(N[i, j], N[i, k] + N[k, j])
return N

[]: M=pl.array([
[0,float('inf') , float('inf') , float('inf') , -1 , float('inf')],
[1,0,float('inf'),2,float('inf'),float('inf')],
[float('inf'),2,0,float('inf'),float('inf'),6],
[-3,float('inf'),float('inf'),0,float('inf'),float('inf')],
[float('inf'),7,float('inf'),4,0,float('inf')],
[float('inf'),5,-4,float('inf'),float('inf'),0]
])
M

[]: array([[0., inf, inf, inf, -1., inf],
[1., 0., inf, 2., inf, inf],
[inf, 2., 0., inf, inf, 6.],
[-3., inf, inf, 0., inf, inf],
[inf, 7., inf, 4., 0., inf],
[inf, 5., -4., inf, inf, 0.]])

[]: floydwarshall(M)

[]: array([[0., 6., inf, 3., -1., inf],
[-1., 0., inf, 2., -2., inf],
[1., 2., 0., 4., 0., 6.],
[-3., 3., inf, 0., -4., inf],
[1., 7., inf, 4., 0., inf],
[-3., -2., -4., 0., -4., 0.]])

5

Complément : fermeture transitive d’un graphe Considérons de nouveau un graphe non
pondéré, orienté ou non. Le problème de la fermeture transitive consiste à déterminer si deux
sommets 𝑎 et 𝑏 peuvent être reliés par un chemin allant de 𝑎 à 𝑏. Pour le résoudre, nous allons
utiliser la matrice d’adjacence associée à ce graphe, mais cette fois en utilisant les valeurs booléennes
True pour dénoter l’existence d’une arête et False pour en marquer l’absence. Remplaçons main-
tenant dans l’algorithme de Floyd-Warshall la relation de récurrence sur les coefficients des matrices
𝑀 (𝑘)par:

𝑚(𝑘+1)
𝑖𝑗 = 𝑚(𝑘)

𝑖𝑗 ou (𝑚(𝑘)
𝑖,𝑘+1 et 𝑚(𝑘)

𝑘+1,𝑗)

On peut prouver de façon similaire à ce que nous avons fait que le booléen 𝑚(𝑘)
𝑖𝑗 dénote l’existence

d’un chemin reliant les sommets 𝑣𝑖 et 𝑣𝑗 en ne passant que par les sommets 𝑣1, 𝑣2, … , 𝑣𝑘. a matrice
𝑀 (𝑛) résout le problème de la fermeture transitive.

L’algorithme ainsi modifié est connu sous le nom d’algorithme de Warshall :

[]: def warshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):

for i in range(n):
for j in range(n):

N[i, j] = N[i, j] or N[i, k] and N[k, j]
return N

[]: N=M.copy()
n = M.shape[0]
for i in range(n):

for j in range(n):
if N[i,j]==float('inf'):

N[i,j]=False
else:

N[i,j]=True
warshall(N)

6

	2. Piles et files
	Appli 2 : Notation polonaise inverse

	3. Dictionnaires
	3.3. Fonction de hachage
	3.4 Les dictionnaires en pratique
	3.4.1 Création d'un dictionnaire
	3.4.2 Parcours d'un dictionnaire

	4. Programmation dynamique
	4.1. Triangle de Pascal
	Calcul récursif naïf des coefficients binomiaux
	Version itérative du calcul des coefficients binomiaux
	Version récursive avec memoisation

	4.2. Algorithme de Floyd-Warshall

