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[ ]: import pylab as pl
import time

1 2. Piles et files
1.1 Appli 2 : Notation polonaise inverse

[1]: def RPN(l):
pile=[]
for el in l:

if el not in ('x','+'):
pile.append(el)

elif el=='+':
pile.append(pile.pop()+pile.pop())

else:
pile.append(pile.pop()*pile.pop())

print(pile)

RPN([2,3,4,'x','+'])

[2]
[2, 3]
[2, 3, 4]
[2, 12]
[14]

2 3. Dictionnaires
2.1 3.3. Fonction de hachage
Différents types peuvent être hachés

[2]: hash(12345), hash("12345"), hash((1,2,3,4,5))

[2]: (12345, -7313169373550564608, -5659871693760987716)

Mais pas les listes
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[3]: hash([1,2,3,4,5])
Traceback (most recent call last):
File"<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Cell In[3], line 2
Traceback (most recent call last):

^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

La fonction de hachage est localement injective, c’est-à-dire qu’elle est très sensible aux petites
variations des clefs.

[ ]: hash("Dupont"),hash("Dupond"),hash("Dupont")-hash("Dupond")

[ ]: (8826115988355940694, -550959240832759317, 9377075229188700011)

2.2 3.4 Les dictionnaires en pratique
2.2.1 3.4.1 Création d’un dictionnaire

[ ]: prix = {"carottes": 1.49 ,"brocolis":2.49 ,"pommes":0.99}
dico_vide = {}
dico_vide2 = dict()

prix,dico_vide,dico_vide2

[ ]: ({'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99}, {}, {})

[ ]: prix["pommes"]

[ ]: 0.99

[ ]: prix["avocats"] = 4.99
print(prix)

{'carottes': 1.49, 'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}

[ ]: prix.pop("carottes")
print(prix)

{'brocolis': 2.49, 'pommes': 0.99, 'avocats': 4.99}
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2.2.2 3.4.2 Parcours d’un dictionnaire

[ ]: for clef in prix.keys():
print(clef)

brocolis
pommes
avocats

[ ]: for clef in prix:
print(clef)

brocolis
pommes
avocats

[ ]: for valeur in prix.values():
print(valeur)

2.49
0.99
4.99

[ ]: for clef, valeur in prix.items():
print("Le prix des {} est de {}€/kg".format(clef,valeur))

Le prix des brocolis est de 2.49€/kg
Le prix des pommes est de 0.99€/kg
Le prix des avocats est de 4.99€/kg

[ ]:

3 4. Programmation dynamique
3.1 4.1. Triangle de Pascal
3.1.1 Calcul récursif naïf des coefficients binomiaux

[ ]: def mesure_duree(f,arg):
"""
retourne le résultat d'exécution de la fonction f avec arg passé en argument
"""
t1=time.perf_counter()
res=f(*arg)
t2=time.perf_counter()
print("C{}={} effectué en {:.1e}s".format(arg,res,t2-t1))

[ ]: def binom(n, p):
if p == 0 or n == p:

return 1
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return binom(n-1, p-1) + binom(n-1, p)

mesure_duree(binom,(8,2))

C(8, 2)=28 effectué en 2.1e-05s

[ ]: mesure_duree(binom,(8,4))

C(8, 4)=70 effectué en 2.0e-05s

[ ]: mesure_duree(binom,(30,15))

C(30, 15)=155117520 effectué en 2.0e+01s

3.1.2 Version itérative du calcul des coefficients binomiaux

[ ]: def binom_it(n, p):
t = pl.zeros((n + 1, p + 1))
for i in range(0, n + 1):

t[i, 0] = 1
for i in range(1, p + 1):

t[i, i] = 1
for i in range(2, n + 1):

for j in range(1, min(p, i) + 1):
t[i, j] = t[i - 1, j - 1] + t[i - 1, j]

return t[n, p]

[ ]: mesure_duree(binom_it,(300,150))

C(300, 150)=9.375970277282748e+88 effectué en 2.6e-02s

3.1.3 Version récursive avec memoisation

[ ]: binom_dict = {}

def binom_mem(n, p):
if (n, p) not in binom_dict:

if p == 0 or n == p:
binom_dict[(n, p)] = 1

else:
binom_dict[(n, p)] = binom_mem(n - 1, p - 1) + binom_mem(n - 1, p)

return binom_dict[(n, p)]

[ ]: mesure_duree(binom_mem,(30,15))

C(30, 15)=155117520 effectué en 2.8e-04s

Remarque culturelle Le code suivant permet d’associer automatiquement un dictionnaire à la
fonction récursive utilisée.

4



[ ]: from functools import lru_cache

@lru_cache
def binom(n, p):

if p == 0 or n == p:
return 1

return binom(n-1, p-1) + binom(n-1, p)

mesure_duree(binom,(30,15))

C(30, 15)=155117520 effectué en 2.5e-04s

3.2 4.2. Algorithme de Floyd-Warshall

[ ]: def floydwarshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):

for i in range(n):
for j in range(n):

N[i, j] = min(N[i, j], N[i, k] + N[k, j])
return N

[ ]: M=pl.array([
[0,float('inf') , float('inf') , float('inf') , -1 , float('inf')],
[1,0,float('inf'),2,float('inf'),float('inf')],
[float('inf'),2,0,float('inf'),float('inf'),6],
[-3,float('inf'),float('inf'),0,float('inf'),float('inf')],
[float('inf'),7,float('inf'),4,0,float('inf')],
[float('inf'),5,-4,float('inf'),float('inf'),0]
])
M

[ ]: array([[ 0., inf, inf, inf, -1., inf],
[ 1., 0., inf, 2., inf, inf],
[inf, 2., 0., inf, inf, 6.],
[-3., inf, inf, 0., inf, inf],
[inf, 7., inf, 4., 0., inf],
[inf, 5., -4., inf, inf, 0.]])

[ ]: floydwarshall(M)

[ ]: array([[ 0., 6., inf, 3., -1., inf],
[-1., 0., inf, 2., -2., inf],
[ 1., 2., 0., 4., 0., 6.],
[-3., 3., inf, 0., -4., inf],
[ 1., 7., inf, 4., 0., inf],
[-3., -2., -4., 0., -4., 0.]])
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Complément : fermeture transitive d’un graphe Considérons de nouveau un graphe non
pondéré, orienté ou non. Le problème de la fermeture transitive consiste à déterminer si deux
sommets 𝑎 et 𝑏 peuvent être reliés par un chemin allant de 𝑎 à 𝑏. Pour le résoudre, nous allons
utiliser la matrice d’adjacence associée à ce graphe, mais cette fois en utilisant les valeurs booléennes
True pour dénoter l’existence d’une arête et False pour en marquer l’absence. Remplaçons main-
tenant dans l’algorithme de Floyd-Warshall la relation de récurrence sur les coefficients des matrices
𝑀 (𝑘)par:

𝑚(𝑘+1)
𝑖𝑗 = 𝑚(𝑘)

𝑖𝑗 ou (𝑚(𝑘)
𝑖,𝑘+1 et 𝑚(𝑘)

𝑘+1,𝑗)

On peut prouver de façon similaire à ce que nous avons fait que le booléen 𝑚(𝑘)
𝑖𝑗 dénote l’existence

d’un chemin reliant les sommets 𝑣𝑖 et 𝑣𝑗 en ne passant que par les sommets 𝑣1, 𝑣2, … , 𝑣𝑘. a matrice
𝑀 (𝑛) résout le problème de la fermeture transitive.

L’algorithme ainsi modifié est connu sous le nom d’algorithme de Warshall :

[ ]: def warshall(M):
n = M.shape[0]
N = M.copy()
for k in range(n):

for i in range(n):
for j in range(n):

N[i, j] = N[i, j] or N[i, k] and N[k, j]
return N

[ ]: N=M.copy()
n = M.shape[0]
for i in range(n):

for j in range(n):
if N[i,j]==float('inf'):

N[i,j]=False
else:

N[i,j]=True
warshall(N)
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